首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6674篇
  免费   1491篇
  国内免费   1233篇
测绘学   92篇
大气科学   389篇
地球物理   2160篇
地质学   2781篇
海洋学   2564篇
天文学   18篇
综合类   283篇
自然地理   1111篇
  2024年   14篇
  2023年   85篇
  2022年   167篇
  2021年   269篇
  2020年   333篇
  2019年   354篇
  2018年   322篇
  2017年   303篇
  2016年   317篇
  2015年   329篇
  2014年   419篇
  2013年   547篇
  2012年   350篇
  2011年   457篇
  2010年   358篇
  2009年   432篇
  2008年   477篇
  2007年   453篇
  2006年   506篇
  2005年   323篇
  2004年   347篇
  2003年   325篇
  2002年   239篇
  2001年   225篇
  2000年   181篇
  1999年   184篇
  1998年   144篇
  1997年   157篇
  1996年   121篇
  1995年   100篇
  1994年   97篇
  1993年   93篇
  1992年   83篇
  1991年   59篇
  1990年   63篇
  1989年   32篇
  1988年   22篇
  1987年   14篇
  1986年   11篇
  1985年   24篇
  1984年   17篇
  1983年   19篇
  1982年   10篇
  1981年   10篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有9398条查询结果,搜索用时 31 毫秒
61.
Managed aquifer recharge is an effective method for utilizing excess flood flows, but clogging of porous media is a limiting factor in the implementation of this water storage technique. In recent years, much research on the physical clogging of porous media during artificial recharge has been conducted. However, the understanding of clogging due to silt‐sized suspended solids (SS) is still inadequate, especially under varying physical conditions. Here, we subjected sand columns to controlled rates of flow and SS suspensions to investigate the influence of media size, SS size, SS concentration, and flow velocity on the clogging of porous media by silt‐sized SS. The results show that the diameter ratio of SS particles to sand grains is the dominant factor influencing the position of physical clogging. As pore velocity increased, the mobility of silt‐sized SS was enhanced and retention in the porous media decreased noticeably. The spatial retention profiles in the porous media were found to vary greatly at different flow velocities. The SS concentration of the infiltrating suspension also dramatically influenced the mobility and deposition of silt‐sized SS particles, such that high concentrations accelerated the clogging process. As the different physical factors changed, the breakthrough curves and retention profiles of silt‐sized SS particles changed obviously and the mechanisms of retention differed. On the whole, clogging position is mainly determined by particle size ratio, but clogging rate is dominated by a variety of factors including particle size ratio, SS concentration, and flow velocity.  相似文献   
62.
河南新郑—太康断裂东段土壤气体地球化学特征   总被引:2,自引:0,他引:2  
土壤气浓度测量能够揭示断裂位置和活动特征。 由于河南新郑—太康断裂北西向隐伏断裂带空间定位精度有待提高, 以及2016年5月该区出现地下逸出气异常的宏观现象, 在太康县西近垂直于断裂走向布设了一条长约13 km的NE—NNE走向的地球化学观测剖面, 用于分析隐伏断层浅层位置及其与地下逸出气宏观异常的关系。 观测结果表明: 该剖面的异常段与该区浅层地震勘探显示的断裂带地表出露位置相吻合, 其中Rn体积活度和H2、 CO2浓度异常揭示出南段有4条断层, 北段有2条断层, 且均具有高角度特征, 南段的CO2浓度异常区与地下逸出气宏观异常位置相符, 但代表构造特征的Rn体积活度和H2浓度没有出现异常, 认为与构造关系不密切。  相似文献   
63.
64.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
65.
66.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   
67.
The assessment of sediment yield from reservoir siltation requires knowledge of the reservoir's sediment trap efficiency (TE). Widely used approaches for the estimation of the long‐term mean TE rely on the ratio of the reservoir's storage capacity (C) to its catchment size (A) or mean annual inflow (I). These approaches have been developed from a limited number of reservoirs (N ≤ 40), most of them located in temperate climate regions. Their general applicability to reservoirs receiving highly variable runoff such as in semi‐arid areas has been questioned. Here, we examine the effect of ephemeral inflow on the TE of 10 small (≤ 280 × 103 m3), intermittently dry reservoirs located in the Kruger National Park. Fieldwork was conducted to determine the storage capacity of the reservoir basins. The frequency and magnitude of spillage events was simulated with the daily time step Pitman rainfall–runoff model. Different runoff scenarios were established to cope with uncertainties arising from the lack of runoff records and imperfect input data. Scenarios for the relationship between water and sediment discharge were created based on sediment rating curves. Taking into account uncertainties in hydrological modelling, uncertainties of mean TE estimates, calculated from all scenarios (N = 9), are moderate, ranging from ±6 to ±11% at the 95% confidence level. By comparison, estimating TE from the storage capacity to catchment area (C/A) ratio induces high uncertainty (ranges of 35 to 65%), but this uncertainty can be confined (15 to 33%) when the latter approach is combined with hydrological modelling. Established methods relying on the storage capacity to mean annual inflow (C/I) ratio most probably lead to an overestimation of the TE for the investigated reservoirs. The approach presented here may be used instead to estimate the TE of small, intermittently dry reservoirs in semi‐arid climate regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
68.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
69.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
70.
The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long-term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long-term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号